首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11549篇
  免费   969篇
  国内免费   1506篇
电工技术   110篇
综合类   532篇
化学工业   2695篇
金属工艺   4047篇
机械仪表   515篇
建筑科学   79篇
矿业工程   161篇
能源动力   241篇
轻工业   68篇
水利工程   2篇
石油天然气   310篇
武器工业   1271篇
无线电   506篇
一般工业技术   2311篇
冶金工业   924篇
原子能技术   109篇
自动化技术   143篇
  2024年   26篇
  2023年   193篇
  2022年   300篇
  2021年   348篇
  2020年   377篇
  2019年   334篇
  2018年   301篇
  2017年   478篇
  2016年   445篇
  2015年   468篇
  2014年   520篇
  2013年   672篇
  2012年   594篇
  2011年   738篇
  2010年   634篇
  2009年   672篇
  2008年   546篇
  2007年   820篇
  2006年   736篇
  2005年   523篇
  2004年   539篇
  2003年   511篇
  2002年   521篇
  2001年   503篇
  2000年   450篇
  1999年   390篇
  1998年   302篇
  1997年   279篇
  1996年   215篇
  1995年   143篇
  1994年   122篇
  1993年   101篇
  1992年   77篇
  1991年   36篇
  1990年   48篇
  1989年   26篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
王建  赵亚风  乔晓林  李兴刚  赵慧 《化工进展》2020,39(z2):312-318
复合固体推进剂含有固体颗粒较多,离散单元法是一种适合固体推进剂生产过程数值仿真的有效方法,颗粒物料的接触参数是保证离散单元法仿真精度的关键。本文以复合固体推进剂的主要组分铝粉和高氯酸铵固体颗粒为研究对象,通过实验测试获得了相关物料的安息角,利用专业离散元软件EDEM仿真模拟了安息角测试实验过程,建立了物料安息角与接触参数之间的联系。研究表明,滚动摩擦系数和滑动摩擦系数越大,安息角越大,物料流动性越差。对比仿真与实验结果,通过逆向反推法确定了物料的滑动摩擦系数和滚动摩擦系数两个关键接触参数。铝粉与高氯酸铵1∶2混合颗粒的滑动摩擦系数为0.2,滚动摩擦系数为0.05。为固体推进剂加工生产过程离散元数值仿真提供了关键基础数据。  相似文献   
32.
ABSTRACT

The high-pressure sliding (HPS) process was applied for grain refinement of a pipe form of an Al-3wt%Mg-0.2wt%Sc alloy by developing two types of straining techniques (called in this study anvil sliding and mandrel sliding). To achieve a homogeneous microstructure throughout the cross-section of the pipe, the sample is rotated around the longitudinal axis every after sliding operation by introducing multi-pass technique, named multi-pass HPS (MP-HPS) as developed earlier for rods. The MP-HPS-processed sample shows ultrafine-grained structures with an average grain size of ~260 and ~300?nm after the HPS processing using anvil sliding and mandrel sliding. The samples also exhibit superplasticity with total elongations well more than 400%, respectively. A finite-element method is used to simulate the evolution of strain in the HPS processing and demonstrates that the simulation well represents the experimental results.  相似文献   
33.
The corrosion behavior of pure Mg17Al12 and the effect of ball milling in presence of additives (i.e. graphite (G) and magnesium chloride (MgCl2)) are evaluated in 3.5 wt% NaCl aqueous solution using electrochemical polarization and impedance measurements. Pure Mg17Al12 and milled Mg17Al12 without additives and with MgCl2 present an open current potential (OCP) of −1.2 V/SCE while Mg17Al12 + G shows a slightly higher OCP (+10% maximum). Mg17Al12 corrodes with low kinetics and an increase of corrosion rate for the milled Mg17Al12 is observed. The corrosion current densities (Jcorr) derived from the Tafel plots, exhibit their corrosion reactivity as follow: Mg17Al12 < Mg17Al12 5h < Mg17Al12 + G 5h < Mg17Al12 + MgCl2 5h. Electrochemical impedance spectroscopy (EIS) results are in good agreement with the measured Jcorr. Randles circuit models are established for all samples to explain their surface behavior in the aqueous NaCl solution. The variation of the fitted parameters is attributed either to the effect of ball milling or to the effect of the additive. Our results are helpful in elucidating the effect of ball milling and the additives.  相似文献   
34.
为了从分子层面上对含能材料不同分子构型间的转变情况有一个直观认识,借助Gaussian 09软件,运用密度泛函理论(DFT),采用TS算法搜寻β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7在分子构型转变过程中的过渡态结构,确定了它们的构型转变过程;并通过计算吉布斯自由能随构型转变路径的变化,比较多态含能材料分子构型转变的难易程度。结果表明,由亚稳晶型到稳定晶型的转变首先会越过过渡态,克服自由能能垒转变为亚稳态结构,实现β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7分子构型转变分别需要克服的自由能能垒分别为5.25、22.21、9.69和10.24kJ/mol。因此,常温常压下β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7构型转变的难度大小排序为:HMX>>FOX-7>CL-20>RDX。  相似文献   
35.
36.
37.
《Ceramics International》2020,46(5):5876-5886
Additive Manufacturing (AM) technologies applied to the titanium alloys have attracted attention from industries in recent years. Despite one of the main goals of AM is the reduction of manufacturing steps, semi-finish/finish machining operations are still required so as to obtain the desired geometrical tolerance and surface features. In this study, the solid end mill was manufactured by Al2O3/Si3N4 (Sialon) ceramic materials and employed in high-speed slot milling of Ti6Al4V alloy fabricated by the Direct Metal Laser Sintering (DMLS) AM technology to study the tool wear characteristics during processing. The Raman spectroscopic method was employed to characterize the molecular structures of Sialon ceramics for the manufacturing of the cutting tool. The morphologies and elemental maps of wear region of the ceramic tool were examined by scanning electron microscope and energy dispersive spectroscopy techniques. The results show that the adhesion wear and diffusion wear are the dominant wear mechanisms, and the chemical stability of Al2O3/Si3N4 (Sialon) ceramics fabricated as the solid ceramic tool to the attack of the atoms from additive manufactured Ti6Al4V is relatively weak under the atmosphere. The difference of thermal expansion coefficients of diffusion layer and tool substrate accelerates the initiation and propagation of thermal cracks formed on the diffusion interface. Moreover, fracturing and crater-like groves near the tool edge were finally formed due to the removal of adhered workpiece material.  相似文献   
38.
《Ceramics International》2020,46(9):13114-13124
In this study, plasma electrolyte oxidation (PEO) method was employed to modify the surface of Ti–6Al–4V. Effects of different concentrations of ZrO2 nanoparticles (0, 1, 3 and 5 g/l) into a phosphate-based electrolyte on the morphology, wettability, antibacterial and corrosion behaviors of coatings were investigated. Microstructural analyses of coatings were evaluated using scanning electron microscopy with an energy dispersive spectrometer. Also, X-ray diffraction, contact angle instrument and profilometry were respectively used to perform phase analysis, wettability, and surface roughness of the coatings. The antibacterial test was conducted with spot inoculation method on four pathogenic bacteria. Polarization and impedance spectroscopy measurements were performed in Hank's solution to investigate the corrosion behavior of coatings. The results revealed that PEO coatings without nanoparticles and by increasing the concentration of the ZrO2 nanoparticles up to 3 g/l in the electrolyte led to a significant improvement in the antibacterial activities of gram-negative bacteria (P. aeruginosa and E. Coli). In the case of gram-positive bacteria, the PEO coated samples demonstrated improved antibacterial effects but addition of ZrO2 nanoparticles in the PEO coatings resulted in deterioration of antibacterial effect. The sample coated with 3 g/l ZrO2 nanoparticles showed the peak corrosion resistance compared to its counterparts.  相似文献   
39.
The demands for high-purity hydrogen required in fuel-cell applications impose new goals and challenges for design of well performing water-gas shift (WGS) catalysts. Gold-based catalysts have exhibited high activity in the WGS reaction at low temperature. Preparation of appropriate and economically viable supports with complex composition by various synthesis procedures is an attractive approach to WGS performance improvement. The effect of two different preparation methods (wet impregnation or mechanical mixing) and ceria content (10, 20 or 30 wt%) on textural, structural, surface and reductive properties and WGS activity of gold catalysts was studied. Additionally, the role of Y2O3 as a promoter of ceria was examined. Long-term stability test was carried out at 260 °C over the most active catalyst. The composition of the best performing sample (composed of about 70 wt% alumina), prepared by mechanical mixing, was considered promising in case of practical applications because of its cost efficiency. The combination of gold nanoparticles and alumina supported Y-doped ceria proved an advantageous approach for developing new catalytic formulations with high effectiveness in clean hydrogen production.  相似文献   
40.
The influence of electrochemical charging of hydrogen at j = ?5 mA/cm2 for 6, 12, 48 and 96 h on the structural and the mechanical behavior of wrought and electron beam melting (EBM) Ti–6Al–4V alloys containing 6 wt% β and similar impurities level was investigated. The length of the α/β interphase boundaries in the EBM alloy was larger by 34% compared to that in the wrought alloy. The small punch test (SPT) technique was used to characterize the mechanical behavior of the non-hydrogenated and hydrogenated specimens. It was found that the maximum load and the displacement at maximum load of the wrought alloy remained nearly stable after 6 h of charging, showing a maximum decrease of ~32% and 11%, respectively. Similarly, hydrogenation of the EBM alloy resulted in a gradual degradation in mechanical properties with charging time, up to ~81% and 86% in pop-in load and displacement at the “pop-in” load, respectively. The mode of fracture of the wrought alloy changed from ductile to semi-brittle with mud-cracking in all hydrogenated specimens. In contrast, the mode of fracture of the EBM alloy changed from a mixed mode ductile-brittle fracture to brittle fracture with star-like morphology. The degraded mechanical properties of the EBM alloy are attributed to its α/β lamellar microstructure which acted as a short-circuit path and enhanced hydrogen diffusion into the bulk as well as δa and δb hydride formation on the surface. In contrast, a surface layer with higher concentration of δa and δb hydrides in the wrought alloy served as a barrier to hydrogen uptake into the bulk and increased the alloy resistivity to hydrogen embrittlement (HE). This study shows that EBM Ti–6Al–4V alloy is more susceptible to mechanical degradation due to HE than wrought Ti–6Al–4V alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号